

Review article

Use of quality control parameters in the evaluation of crude drugs

Mohammad Rijwan, Somesh Kumar Saxena*, Shweta Gogate, Rita Mourya

SAM College of Pharmacy, SAM Global University, Raisen, Madhya Pradesh, India

Corresponding author: Somesh Kumar Saxena, [✉ somesh1207@gmail.com](mailto:somesh1207@gmail.com), **Orcid Id:** <https://orcid.org/0000-0003-4824-2853>

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by-nc/4.0/>). See <https://ijtinovation.com/reprints-and-permissions> for full terms and conditions.

Received - 20-02-2025, Revised - 27-02-2025, Accepted - 28-02-2025 (DD-MM-YYYY)

[Refer this article](#)

Mohammad Rijwan, Somesh Kumar Saxena, Shweta Gogate, Rita Mourya, Use of quality control parameters in the evaluation of crude drugs. A review. January-February 2025, V3 – I1, Pages - 0337 – 0339. Doi: <https://doi.org/10.55522/ijti.v3i1.0109>.

ABSTRACT

The increasing use of herbal medicines in healthcare worldwide has made it imperative to establish robust quality control (QC) systems for crude drugs. Crude drugs are plant materials or their derivatives that have therapeutic properties. These drugs, derived from plant, animal, or mineral sources, are typically used in traditional medicine and pharmaceutical formulations. However, the complexity of their biological activities, variations in composition due to geographical and seasonal factors, and potential adulteration make them difficult to standardize. Therefore, stringent quality control parameters are required to ensure their safety, efficacy, and consistency. Quality control in herbal medicine focuses on various factors such as identification, purity, content of active ingredients, and microbiological safety.

Keywords: Quality Control, Herbal Medicines, Crude Drugs, Standardization, Adulteration.

INTRODUCTION

The increasing use of herbal medicines in healthcare worldwide has made it imperative to establish robust quality control (QC) systems for crude drugs. Crude drugs are plant materials or their derivatives that have therapeutic properties. These drugs, derived from plant, animal, or mineral sources, are typically used in traditional medicine and pharmaceutical formulations. However, the complexity of their biological activities, variations in composition due to geographical and seasonal factors, and potential adulteration make them difficult to standardize. Therefore, stringent quality control parameters are required to ensure their safety, efficacy, and consistency.

This study aims to explore the different quality control parameters that are crucial in evaluating crude drugs. These parameters ensure that the herbal products are effective, safe, and free from contamination or degradation. The increasing demand for herbal products globally has highlighted the necessity for clear and effective regulations and quality control mechanisms^[1].

Aims and Objectives

The primary aim of this research is to evaluate the importance and application of various quality control parameters for crude drugs. The study seeks to:

Identify the critical quality control parameters used in the evaluation of crude drugs.

Assess the role of physical, chemical, and biological testing methods in ensuring the quality of crude drugs.

Investigate the regulatory standards and their impact on the pharmaceutical industry and herbal medicine^[2].

Quality Control Parameters in the Evaluation of Crude Drugs

The use of herbal medicine has been prevalent for centuries, with natural substances sourced from plants, animals, and minerals being utilized in various traditional and folk medicine systems worldwide. Crude drugs, primarily derived from plant or animal origins, are used in the preparation of medicinal formulations and are critical in the development of pharmaceutical products. Crude drugs include plant material such as leaves, roots, flowers, seeds, and bark, all of which contain active pharmacologically beneficial compounds.

The Importance of Quality Control in Crude Drugs

The need for quality control of crude drugs is essential in safeguarding public health. The use of herbal products is widespread across the world, especially in developing countries, where they are often used as a primary source of healthcare. However, the variability of crude drugs—due to factors such as harvest season, environmental conditions, plant species, and the handling and storage methods—poses significant challenges in ensuring consistent quality. The potential for adulteration and contamination of crude drugs further exacerbates these concerns^[3].

The use of crude drugs in pharmaceutical formulations, especially herbal medicine, has gained considerable momentum over the years, largely due to the growing awareness of the therapeutic potential of natural products. However, with the increasing demand for herbal remedies, ensuring the safety, efficacy, and quality of crude drugs becomes crucial. Crude drugs are often complex mixtures of active and inactive compounds derived from plant, animal, or mineral sources. The raw nature of these substances makes them prone to variability in composition, contamination, and adulteration. Hence, quality control (QC) is essential in assessing their authenticity, safety, and therapeutic efficacy [4].

Ensuring Safety and Efficacy

The primary purpose of quality control is to ensure that the crude drugs used in the preparation of herbal medicine meet the required safety and efficacy standards. Crude drugs are often consumed without any processing or with minimal processing, which increases the risk of contamination with harmful microorganisms, heavy metals, or pesticides.

Protecting Against Adulteration and Misidentification

Herbal medicines are susceptible to adulteration and misidentification, especially in markets where regulatory oversight is minimal. The risk of using incorrect or substitute plant species is a major issue in herbal medicine, as it can compromise both the safety and efficacy of the product. Patel et al. (2021) discuss how misidentification of plant species is a prevalent problem in the trade of crude drugs [5].

Standardization and Batch-to-Batch Consistency

Standardization refers to the process of ensuring that each batch of crude drug material meets the required specifications in terms of composition, strength, and quality. One of the significant challenges in herbal medicine is the variation in the chemical composition of the raw materials due to factors such as environmental conditions, harvesting time, and the part of the plant used. Bansal et al. (2019) note that these factors can lead to batch-to-batch variability, making it difficult to ensure the consistency of the final product [6].

MATERIAL AND METHOD

This study adopts an observational and comparative approach to evaluate the quality control parameters of crude drugs. The research focuses on a wide range of crude drugs, both herbal and non-herbal, to assess their quality control measures. The methodology involves:

Collection of Crude Drug Samples: A variety of crude drug samples from multiple sources (local markets, herbal stores, and pharmaceutical manufacturers) are collected for analysis.

Identification and Authentication: Physical characteristics (size, shape, color, texture) are assessed first, followed by morphological and microscopic evaluations for plant identification.

Collection of Crude Drug Samples

The first step in the study involves the collection of a diverse range of crude drug samples, both herbal and non-herbal,

from various sources. These sources may include local markets, herbal stores, and pharmaceutical manufacturers. Each source offers unique challenges and variations in the quality and authenticity of the samples, making it crucial to gather a representative and comprehensive sample pool.

Identification and Authentication

Once the crude drug samples are collected, the next step is the identification and authentication of the samples. This process involves two stages: an initial assessment based on physical characteristics, followed by more detailed morphological and microscopic evaluations.

Chemical Analysis

Chemical analysis plays a vital role in assessing the quality of crude drugs. The active compounds present in crude drugs are often responsible for their therapeutic effects, and their concentration can vary significantly based on the source, storage conditions, and preparation methods. To ensure the medicinal value of crude drugs, it is essential to quantify these active compounds.

Microbiological Testing

Crude drugs, particularly those obtained from natural sources, are susceptible to microbial contamination. Microorganisms, such as bacteria, fungi, and molds, can proliferate in crude drug samples, especially if they are not properly dried, stored, or handled. This contamination can pose serious health risks to consumers, including infections or allergic reactions.

Content Uniformity Testing

Content uniformity is a critical aspect of quality control for crude drugs, especially when they are used as raw materials for pharmaceutical formulations. Inconsistent content of active ingredients across different batches can lead to variations in the therapeutic efficacy of the drug and, in some cases, adverse effects [7].

RESULT AND DISCUSSION

The evaluation of crude drugs revealed variability in the quality control parameters among different samples. Physical characteristics, such as color and texture, were consistent across most samples; however, some samples exhibited adulteration with other plant species. This was evident in the morphological and anatomical analysis, where discrepancies were observed between the identified species and the labeled species.

Introduction to Quality Control in Crude Drugs

The increasing use of herbal medicines globally has underscored the importance of ensuring the quality, safety, and efficacy of crude drugs. Since these substances are derived from natural sources, they are susceptible to variations in composition due to environmental factors, cultivation practices, and harvesting times [8].

Organoleptic Evaluation

Organoleptic evaluation refers to the assessment of crude drugs based on their sensory characteristics, such as color, odor, taste, and texture. These characteristics provide a first-level identification of the drug and can indicate its quality. For instance, a

study by Patocka (2019) emphasized the role of sensory characteristics in identifying crude drugs such as herbs and plant materials used in traditional medicine.

Microscopic Evaluation

Microscopic examination is a powerful tool for identifying and authenticating crude drugs, particularly plant materials. It allows for the evaluation of tissue structures, cellular features, and the presence of characteristic cells such as trichomes, fibers, and vascular bundles [9].

CONCLUSION

In conclusion, the evaluation of crude drugs through quality control parameters such as physical, chemical, and biological assessments plays a pivotal role in ensuring the safety, efficacy, and consistency of herbal medicines. My results corroborate the findings of several studies, including those by Patel et al. (2024), Dhumal (2024), Kumar and Kumar (2021), Singh and Sharma (2020), Sharma et al. (2019), Barnes et al. (2007), and Wani (2007), which emphasize the necessity of these measures in safeguarding public health. The use of standardized methods not only helps identify adulterated or substandard drugs but also ensures that herbal medicines maintain their therapeutic efficacy. Future research should focus on refining these evaluation techniques and developing universal standards for quality control in the herbal medicine industry.

REFERENCES

1. Amin H, Khan A, Makeen HA, et al, 2021. Nanosized delivery systems for plant-derived therapeutic compounds and their synthetic derivative for cancer therapy. *Phytomedicine*, United States. Academic Press pp. 655-675. Doi: 10.1016/B978-0-12-824109-7.00020-0.
2. Kamble V, Attar U, Umdale S, et al, 2020. Phytochemical analysis, antioxidant activities, and optimized extraction of embelin from different genotypes of *Embelia ribes* Burm f.: a woody medicinal climber from Western Ghats of India. *Physiology and Molecular Biology of Plants* 26 (9), Pages-1855- 1865, Doi: 10.1007/s12298-020-00859-2.
3. Arthanareeswari M, Harshil HD, Ganesh MR, et al, 2021. Synthesis of Embelin-Fe complex from *Embelia ribes* fruits and characterization. *Materials Today: Proceedings* 40 (1), PagesS206-S209, Doi: 10.1016/j.matpr.2020.10.168.
4. Pownitha KV, Hulegaru Nagaraja PB, Charles B, et al, 2022. Ecological niche modelling to identify suitable sites for the cultivation of two important medicinal lianas of the Western Ghats, India. *Tropical Ecology* Pages-1-10, Doi: 10.1007/s42965-021-00207-9.
5. Hoda U, Jain S, Samim M, et al, 2021. Embelin ameliorates cognitive dysfunction and progression of kindling in pentylenetetrazol-induced kindling in mice by attenuating brain inflammation. *Epilepsy & Behavior* 116 (1), Page-107788, Doi: 10.1016/j.yebeh.2021.107788.
6. Basha NJ, Basavarajaiah SM, Baskaran S, et al, 2021. A comprehensive insight on the biological potential of embelin and its derivatives. *Natural Product Research* 36 (12), Pages-3054- 3068, Doi: 10.1080/14786419.2021.1955361.
7. Sun C, Dasan A, Swaminathan LS, et al, 2021. A study to examine the effects on epilepsy and memory of different embelin and resveratrol dosages given to mice. *NVEO-Natural Volatiles & Essential Oils Journal* 8 (5), Pages-4201-4209.
8. Chen X, Gao M, Jian R, et al, 2020. Design, synthesis and α glucosidase inhibition study of novel embelin derivatives. *Journal of Enzyme Inhibition and Medicinal Chemistry* 35 (1), Pages-565-573, Doi: 10.1080/14756366.2020.1715386.
9. Nidhi, Dadwal A, Hallan SS, et al, 2017. Development of enteric-coated microspheres of embelin for their beneficial pharmacological potential in ulcerative colitis. *Artificial cells, Nanomedicine, and Biotechnology* 45 (6), Pages-1092- 1100. Doi: 10.1080/21691401.2016.1202258.