

Research article

Prediction of *annona squamosa* by using tools Swiss ADME and PubChem

Aishwarya D Sarvade*, Monika R Mali, Komal N Yadav, Komal D Salunkhe

Shri Ganpati institute of pharmaceutical sciences and research Tembhurni, Maharashtra, India

Corresponding author: Aishwarya D Sarvade ✉ aishwaryasarvade6827@gmail.com, **Orcid Id:** <https://orcid.org/>

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by-nc/4.0/>). See <https://ijtinnovation.com/reprints-and-permissions> for full terms and conditions.

Received - 31-07-2024, Revised - 10-08-2024, Accepted - 20-08-2024 (DD-MM-YYYY)

Refer this article

Aishwarya D Sarvade, Monika R Mali, Komal N Yadav, Komal D Salunkhe. Prediction of *annona squamosa* by using tools Swiss ADME and PubChem. July-August 2024, v2 – i4, Pages - 0188 – 0191. Doi: <https://doi.org/10.55522/ijti.v2i4.0058>.

ABSTRACT

Annona squamosa L. Belongs to the Annonaceae family and is one of the basic dietary plants. It is edible fruits & called as "custard apple". In *Annona squamosa* consisting chemical constituent like ferulic acid, chlorogenic acid and caffeic acid etc. The main goal of our study to determination of chemical compound or phytoconstituents which is predicted by using the ADME/T, MOLSoft and also Pubchem software etc. So the ferulic acid having GI absorption rate is good as compared to chlorogenic acid but the comparision between ferulic acid and caffeic acid the caffeic acid determine the high GI absorption.

By using this software we can easily determine the bioavailability score, BBB permeation, $\log k_p$ permeation. By the help of mol.soft and ADME/T software we can easily analyzed chemical compound. We have to stated that or assurity before any kind of clinical trials conducting. Its help to give the data. In free of cost analysis is done. It also ensure that compound would be safer or not. It also helps to researcher for investigate in vivo and in vitro studies.

Keywords: Mol.soft, Swiss ADME, PubChem, Ferulic Acid, Chromogenic acid, Caffeic acid.

INTRODUCTION

Annona Squamosa is also known as the custard apple it is belonging in an AC family in NSE family consisting 119 species. Recording to Indian council of agriculture research reported that sugar apples are found in the state in India without total planting areas of 14000 hectares. The sugar Apple has been used as a natural other food application the most important source of chemicals which is used as innovative in ingredient in the food. There are different parts of a anasthe masa which is used for the extraction many parts of *A. Squamosa* expect collected from barud sleeves same fruits sales and seeds which are helps to treat the this is like the area epilepsy bleeding fever and tumor etc. Ananya acetone INS are having long policket I change which has derived from the fat acid with c 35 37. Uvaricin was first reported before the introduction of more than 500 acetone having different organs of the plants belonging

family Annonaceae. Custerd apple consis different types of phenolic compound like proanthocynidins & 18 various secondary metabolites mostly alkaloids & flavonoids are used for analysis according to phytochemical research. Due to its wide pharmacological properties & biologocal activity such as antibacterial, antidiabetic, antioxidant, antiviral, hepatoprotective & anticancer activities which caused by presences of glycosides polysteroids sugars oils, saponines, tannins, alkaloids, phenols, flavonoids, peptides & other chemical which produce acyivities. By using this Software Mol. soft, SwissADME, PubChem which helps to analyze & evaluate phytochemicals.

MATERIAL AND METHOD

Collection of phytoconstituents

The bioactive compound of *Annona Squamosa* screening done with the help of previous research paper &

then collected from Swiss ADME software and Wikipedia.

Mol.soft and PubChem^[4].

Phytochemicals Obtained From A. Squamosa

By Using Wikipedia Smiles (Simplified Molecular Input

Line Entry System) of Chemical Compound Taken

Put Into In SWISS ADME/T Software

Then it can determine their different parameter.

Methodology

RESULT

Table 1: Physicochemical properties^[5].

Name of Compound	Formula	Molecular weight	No. Heavy atoms	No. arom Heavy Metal atoms	Fraction Csp 3	No. Rotatable bonds	No H-Bond Acceptors	No H-Bond Donors	Molar Refractivity
Ferulic Acid	C10H10O4	194.18g/mol	14	06	0.10	03	04	02	51.63
Chromogenic acid	C16H18O9	354.31g/mol	25	06	0.38	05	09	06	83.50
Caffeic acid	C9H8O4	180.16g/mol	13	06	0.00	02	04	03	47.16

Table 2: Lipophilicity^[6].

Name of Compound	Log P _{o/w} (iLOGP)	Log P _{o/w} (XLOGP3)	Log P _{o/w} (WLOGP)	Log P _{o/w} (MLOGP)	Log P _{o/w} (SILICOS-IT)	Consensus Log P _{o/w}
Ferulic Acid	1.62	1.51	1.39	1.00	1.26	1.36
Chromogenic acid	0.87	-0.42	-0.75	-1.05	-0.61	-0.39
Caffeic acid	0.97	1.15	1.09	0.70	0.75	0.93

Table 3: Water Solubility^[8].

Name of Compound	Log S(ESO)	Solubility	Class	Log S(Ali)	Solubility	Class
Ferulic Acid	-2.11	1.49 e+00mg/ml; 7.68e-03mol/l	Soluble	-2.52	5.86e-01 mg/ml; 3.02e-03 mol/l	Soluble
Chromogenic acid	-1.62	8.50e+00 mg/ml; 2.40e-02 mol/l	Very soluble	-2.58	9.42e-01 mg/ml; 2.66e-03 mol/l	soluble
Caffeic acid	-1.89	2.32e+00 mg/ml; 1.29e-02 mol/l	Very soluble	-2.38	7.55e-01 mg/ml; 4.19e-03 mol/l	soluble

Table 4: Pharmacokinetics^[9].

Name of Compound	GI absorption	BBB permeate	P-gp substrate	CYP1A2 inhibitor	CYP2C19 inhibitor	CYP2C9 inhibitor	Log K _p (skin permeation)
Ferulic Acid	Yes	X	X	X	X	X	-6.41
Chromogenic acid	low	X	X	X	X	X	-8.76cm/s
Caffeic acid	High	X	X	X	X	X	-6.58cm/s

Table 5: Drug Likeness^[10].

Name of Compound	Lipinski	Ghose	Veber	Egan	Muegge	Bioavailability Score
Ferulic Acid	Yes; 0 Violation	✓	✓	✓	No; 1 Violation: MW<200	0.85
Chromogenic acid	Yes; 1 violation: NHorOH>5	No; 1 violation: WLOGP<-0.4	No; 1 violation: TPSA>140	No; 1 violation: TPSA>131.6	No; 2 violations: TPSA>150, H-don>5	0.11
Caffeic acid	Yes; 0 violation	✓	✓	✓	No; 1 violation: MW<200	0.56

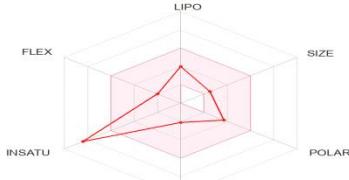
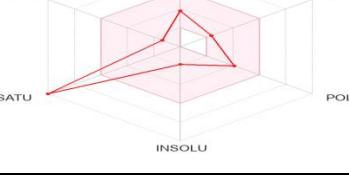
Table 6: Medicinal Chemistry^[11].

Name of Compound	PAINS	Brenk	Leadlikeness	Synthetic accessibility
Ferulic Acid	0 alert	1alert:michael_acceptor_1	No;1Violation: MW<200	1.93
Chromogenic acid	1.alert: catechol	2 alerts: catechol, michael_acceptor_1	No; 1 violation: MW>350	4.16
Caffeic acid	1.alert: catechol A	2 alerts: catechol, michael_acceptor_1	No; 1 violation: MW<250	1.81

Structure Uptake From

Swiss ADME

It is a one of the tool which can helps to evaluate pharmacokinetics, drug likeness, Lipophilicity, solubility, physicochemical properties & also medicinal chemistry of the small molecules.



It is a free web based tool.it helps to determine ADMET properties by using Swiss ADMET software^[2].

PubChem

It is free tool which can detect the following parameters like as follows: Structures, Names and identifiers, Spectral information, Chemical physical properties, Chemical vendors, Food additives and ingredients, Taxonomy, Biological test result, Toxicity^[1, 3].

Radar structure is obtained from SWISS ADMET & 2D chemical structure of ferulic acid ,Chromogenic acid, Caffeic acid taken from PubChem which is as follows in table :-

Table 7: Structure & Topological polar surface area of Ferulic acid, Chromogenic acid, Caffeic acid^[12].

Name of Compound	Radar	Structure
Ferulic Acid		<chem>CC(O)c1ccc(cc1)C=CC(=O)O</chem>
Chlorogenic acid		<chem>CC1(O)C(O)C(O)C(O)C1C2=CC(O)=CC(O)=C2</chem>
Caffeic acid		<chem>CC(=O)Oc1ccc(O)cc1</chem>

CONCLUSION

The clinical trials required more time and more money investment after it might concluded that the molecules fails. Therefore order to reduce modify the leads structure. Which is important for the Invitro study. Swiss ADME software helps to computation of the key such as physicochemical pharmacokinetics drug like and other multiple parameters studies involve it. PubChem is the web tool which also gives the information related to molecules or lead compound. Which can determine the structure name of the chemical compound, toxicity, spectral information etc.

This is concluded that the lead compound analysis done by this two tools which is PubChem and Swiss ADME.

REFERENCES

1. <https://pubchem.ncbi.nlm.nih.gov/compound/65036#section=NLM-Curated-PubMed-Citations,tox>.
2. Mishra S, Dahima R, et al, 2019. In vitro ADME studies of TUG-891, a GPR-120 inhibitor using SWISS ADME predictor. Journal of drug delivery and therapeutics. 9(2), Pages 366-369. Doi: 10.22270/jddt.v9i2-s.2710.
3. <https://pubchem.ncbi.nlm.nih.gov>
4. <http://www.swissadme.ch>.
5. Kaitin KI, 2008. Obstacles and opportunities in new drug development. Clin Pharmacol Ther. 83(2), Pages 210-212. Doi: <https://doi.org/10.1038/sj.cpl.6100462>.
6. Arora T, Mehta AM, Sharma KK, et al, 2008. Substitute of animals in drug research: an approach towards fulfillment of 4R's. Indian J Pharm Sci. 73(1), Pages 1-6. Doi: 10.4103/0250-474X.89750.
7. Oldendorf WH, 1970. Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res. 24(2), Pages 372-376. Doi: [https://doi.org/10.1016/0006-8993\(70\)90123-X](https://doi.org/10.1016/0006-8993(70)90123-X).
8. Pires DEV, Blundell TL, Ascher DB, et al, 2018. PkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 58(9), Pages 4066-4072. Doi: 10.1021/acs.jmedchem.5b00104.
9. Cheng F, Li W, Zhou Y, et al, 2012. admet SAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem INF Model. 52(11), Pages 3099-3105. Doi: 10.1021/ci300367a.
10. Potts RO, Guy RH, 1992. Predicting skin permeability. Pharm Res. 9(5), Pages 663–669. Doi: 10.1023/a:1015810312465.
11. Daina A, Michelin O, Zoete V, 2014. ILOGP: A simple, robust and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA

approach. *J Chem INF Model.* 54(12), Pages 3284-3301.
Doi: <https://doi.org/10.1021/ci500467k>.

12. Daina A, Zoete V, et al, 2016 A BOILED-Egg to predict gastrointestinal absorption and brain penetration of smallmolecules. *ChemMedChem.* 11(11), Pages 1117–1121. Doi: <https://doi.org/10.1002/cmdc.201600182>.